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Quantum Automata: An Overview
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Quantum state machines are introduced. Amplitudes of computational paths,
computational bases, superposition states, and evolution operators are discussed.
The main part of the paper develops a theory of quantum automata and their
slightly more general versions, q-automata. Quantum languages and h -quantum
languages, 0 # h , 1, are studied. A method is given for reducing the size of
the state space. Functions that can be realized as probability maps for q-automata
are characterized. Quantum gates are discussed. A quantum pumping lemma is
employed to show that there are regular languages that are not h -quantum, 0 #
h , 1. The paper closes with a list of open problems.

1. INTRODUCTION

Although the theory of quantum computers has been studied for the past

16 years [3, 4, 9, 10, 13, 14], it did not receive much attention until 1994

[7, 8, 11, 21]. Since that time, quantum computation has been subjected to
intense investigation. Most of the previous research in this field has involved

quantum Turing machines [6, 17, 19, 23], quantum logic gates [2, 10, 12,

13], quantum complexity theory [1, 5, 6, 21, 22], and quantum algorithms

[9, 11, 20, 21]. It now appears to be desirable to go back to the foundations

and to study simpler quantum machines such as quantum automata [16, 17].

In this paper we shall investigate some of the basic properties of quantum
automata. In particular, we shall be concerned with properties of classical

probabilistic automata that carry over to quantum automata [19].

Section 2 reviews elements of Hilbert space theory that will be needed

in the sequel. Section 3 provides an introduction to quantum computing

machines. Its intent is to give the reader a basic understanding of how these
machines operate. We begin with the simplest possible case, namely a quantum
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state machine (QSM). A QSM M has no input or output; it just evolves from

one state to another in equally spaced time steps. Transition amplitudes are

introduced and justified. The amplitude of a computational path is discussed
and the probability that M is in a state s is defined. We then discuss the

concepts of computational bases, superposition states, and evolution opera-

tors. Quantum interference and decoherence are introduced and clarified. A

justification for why the evolution operator must be unitary is given. For

theoretical purposes, a slightly more general machine called a q-state machine

is introduced. We indicate why such machines are easier to work with than
a QSM. We then consider a variation of a QSM called a quantum printer.

Although they are still very simple, quantum printers have an input and

output. Section 3 ends with a discussion of a finalizing QSM. Such machines

possess a set of final states and they provide an introduction to the quantum

automata of Section 4.

The main part of the paper is Section 4, which discusses quantum
automata and their slightly more general versions, q-automata. Response

functions for q-automata are characterized. Finalizing q-automata are devel-

oped and two types of languages called quantum languages and h -quantum

languages, 0 # h , 1, are defined. It is shown that the intersection of two

quantum languages over the same alphabet is again a quantum language. We
next introduce the concept of a generalized finalizing q-automaton and its

corresponding generalized languages. Instead of starting at an initial state,

these automata can start at a superposition of states. We note that if L is a

generalized h 8-quantum language for 0 # h 8 , 1, then L is a generalized

h -quantum language for every 0 , h , 1. A method is given for reducing

the size of the state space for a finalizing q-automaton without changing its
language (if this is possible). Functions that can be realized as probability

maps for q-automata are characterized.

Section 5 discusses quantum gates. It is shown that any finite-dimen-

sional unitary operator can be decomposed into a product of quantum gates.

This is a simplified version of a result given in ref. 6. A quantum pumping

lemma [17] is employed to show that there are regular languages that are
not h -quantum, 0 # h , 1. Finally, Section 6 presents a list of open problems

that are suggested by the work of the previous two sections. For brievity,

some of the proofs are omitted and will be left for a future paper.

2. ELEMENTS OF HILBERT SPACE THEORY

We assume that the reader has some familiarity with Hilbert space theory.

The purpose of this section is to quickly review this theory and to set the

notation that will be used in the sequel. Although the present paper is con-
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cerned with finite-dimensional Hilbert spaces, for generality and future refer-

ence we shall consider arbitrary Hilbert spaces in this section.

A complex Hilbert space is a complete inner product space H over the
field of complex numbers C. We denote the inner product by ^ ? , ? & and assume

that ^ ? , ? & is linear in the first argument. We denote the norm of a vector c
P H by | c | and say that two vectors c , f P H are orthogonal ( c ’ f ) if

^ c , f & 5 O. An orthonormal basis for H is a maximal set of mutually

orthogonal vectors of norm 1. If S is an orthonormal basis for H, then any

c P H has the unique representation.

c 5 o
s P S

^ c , s & s

Let H1 and H2 be Hilbert spaces. Suppose that there exists a Hilbert

space H1 ^ H2 with the following properties:

(a) There is a bilinear map from H1 3 H2 to H1 ^ H2 written as ( c 1,
c 2) j c 1 ^ c 2.

(b) For any bilinear map B from H1 3 H2 to a Hilbert space H, there

is a unique linear transformation T: H1 3 H2 ® H satisfying

T( c 1 ^ c 2) 5 B( c 1, c 2)

Then H1 ^ H2 is called the tensor product of H1 and H2. It can be shown

that the tensor product exists and is unique to within an isomorphism. More-
over, the inner product on H1 ^ H2 is defined by

^ f 1 ^ f 2, c 1 ^ c 2 & 5 ^ f 1, c 1 & ^ f 2, c 2 &

We next consider another important way of combining two Hilbert spaces

H1 and H2. Suppose that there exists a Hilbert space H1 % H2 with the

following properties:

(a) There exist linear injections T1: H1 ® H1 % H2 and T2: H2 ® H1

% H2.
(b) If c 1 P T1H1 and c 2 P T2H2, then c 1 ’ c 2 and every vector c P

H1 % H2 has the form c 5 c 1 1 c 2 with c 1 P T1H1 and c 2 P T2H2.

Then H1 % H2 is called the direct sum of H1 and H2. Again, it can be

shown that the direct sum exists and is unique to within an isomorphism.

The norm of a bounded linear operator T: H ® H is denoted by |T|. It

is well known that if T1: H ® H and T2: H ® H are bounded linear operators,
then |T1T2| # |T1| |T2|. If T: H ® H is a bounded linear operator, then its

adjoint T * is the unique bounded linear operator on H that satisfies

^ T* c , f & 5 ^ c , T f &

for all c , f P H. A bounded linear operator T: H ® H is an isometry if

T *T 5 1, where 1 denotes the identity operator on H. It is clear that T is an
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isometry if and only if T preserves the inner product; that is, ^ T c , T f & 5
^ c , f & for every c , f P H.

Lemma 2.1

A linear operator T: H ® H is an isometry if and only if |T c | 5 | c |
for every c P H.

Proof.

If T is an isometry, then clearly |T c | 5 | c | for every c P H. Conversely,

if |T c | 5 | c |, then

^ (T*T 2 1) c , c & 5 ^ T*T c , c & 2 ^ c , c & 5 |T c |2 2 | c |2 5 0

For every c P H. It follows that T*T 5 1, so T is an isometry. n

A linear operator U: H ® H is unitary if U*U 5 UU* 5 1. Thus, every

unitary operator is an isometry. If H is finite dimensional, then U* U 5 1

implies that UU* 5 1, so every isometry is unitary. However, if H is infinite

dimensional, then an isometry need not be unitary. We denote the Kronecker

delta symbol by d s, t.

Theorem 2.2. Let S be an orthonormal basis for the Hilbert space H. (a)

A bounded linear operator U: H ® H is an isometry if and only if ^ Us, Ut &
5 d s, t for every s, t P S. (b) A linear operator U: H ® H is unitary if and

only if U is an isometry and |U*s| 5 1 for every s P S.

Proof. (a) If U is an isometry, then clearly ^ Us, Ut & 5 d s, t for every s,
t P S. Conversely, suppose that ^ Us, Ut & 5 d s, t for every s, t P S. If c P
H, then c 5 ( a i si , a i P C , si P S. Hence,

|U c |2 5 ^ U o
i

a i si , U o
j

a jsj & 5 o
ij

a i a *j ^ Usi , Usj &

5 o
ij

a i a *j d ij 5 o
i

) a i ) 2 5 | c |2

It follows from Lemma 2.1 that U is an isometry.

(b) If U is unitary, then clearly U is an isometry and |U*s| 5 1 for

every s P S. Conversely, suppose U is an isometry and |U*s| 5 1 for every
s P S. Letting P 5 1 2 UU*, it is easy to check that P is a projection; that

is, P 5 P* 5 P2. Now for every s P S we have

|Ps|2 5 ^ Ps, Ps & 5 ^ P*Ps, s & 5 ^ Ps, s &

5 ^ (1 2 UU*)s, s & 5 ^ s, s & 2 ^ UU*s, s &

5 1 2 ^ U*s, U*s & 5 1 2 |U*s|2 5 0
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Hence, Ps 5 0 for every s P S and it follows that P 5 0. Since UU* 5 1

and U is an isometry, U is unitary. n

Corollary 2.3. Let H be a finite-dimensional Hilbert space and S be an

orthonormal basis for H. A linear operator U: H ® H is unitary if and only

if ^ Us, Ut & 5 d s, t for every s, t P S.
In the sequel we shall denote the set of unitary operators on H by 8(H ).

As we shall see, this type of operator plays an important role in the study

of quantum automata.

3. QUANTUM STATE MACHINES

A quantum state machine (QSM) is a triple M 5 (S, s0, d ) where S is

a finite set of internal states for M, s0 P S is a designated start state, and d :

S 3 S ® C is a transition function. We interpret d (s, t) as the amplitude that
M performs a transition from s to t in one time step and the probability of

such a transition is ) d (s, t) ) 2. We require that d satisfies the condition

o
t

d (s, t) d (s8, t)* 5 d s, s8 (3.1)

for every s, s8 P S, where * denotes complex conjugation and d s, s8 is the

Kronecker delta.

We now give a justification for Eq. (3.1). When s 5 s8, (3.1) gives ( t

) d (s, t) ) 2 5 1, which says that M moves from s to some state with probability

one. When s Þ s8, the left side of (3.1) vanishes and this is needed for the

reversible evolution of M as required by quantum theory. Reversibility says
that if an undisturbed machine M moves from state s to state t in n time

steps, then after n time steps of running the machine in reverse it will move

back to state s. Moreover, d (s, t)* gives the amplitude that M moves from t
to s when M is run in reverse. Referring to Eq. (3.1), d (s, t) d (s8, t)* is the

amplitude that M moves from s to t and then back from t to s8 in two time

steps. Summing over t, ( t d (s, t) d (s8, t)* is the total amplitude that M moves
forward from s and then backward to s8 in two time steps and the probability

of this evolution is ) ( t d (s, t) d (s8, t)* ) 2. By reversibility, if s 5 s8, this

probability is 1 and if s Þ s8, this probability is 0. It follows that (3.1) holds.

The machine M begins in its start state s0 and enters a state s1 P S with

amplitude d (s0, s1). At the second step, M scans its current state (say s1) and

enters a state s2 P S with amplitude d (s1, s2). The machine continues to
evolve as long as desired. At any given time, M is in a definite state s, but

this state cannot be observed without disturbing the later operation of M.

(We will discuss this point in more detail later.) All we know is the amplitude

(and hence the probability) that M is in state s at a given time.



2266 Gudder

The amplitude that M is in state s at time n is computed as follows. A

computational path from s0 to s is a finite sequence s0, s1, . . . , sn 2 1, s. The

amplitude of this path is defined to be

d (s0, s1) d (s1,s2) . . . d (sn 2 2, sn 2 1) d (sn 2 1, s)

and the amplitude An(s) that M is in state s at time n is defined as the sum

of the amplitudes over all paths from s0 to s:

An(s) 5 o
i1,...,in 2 1

d (s0, si1) d (si1, si2) ? ? ? d (sin 2 2, sin 2 1) d (sin 2 1, s) (3.2)

The probability that M is in state s at time n is given by ) An(s) ) 2. The expression

) An(s) ) 2 can indeed be interpreted as a probability because a repeated applica-

tion of (3.1) shows that

o
s

) An(s) ) 2 5 1 (3.3)

Quantum theory allows only certain types of predictions such as the

probability ) An(s) ) 2. For example, we cannot predict the probability that M
is in state s at time m . 0 and in the state t at time n . m. This is because
such an event involves only the computational paths of length n that go

through s at time m and t at time n. If we sum the amplitudes of these paths and

take the square of its absolute value, then this number cannot be interpreted as

a probability. In fact, the resulting number could be greater than one. The

reason for this is that amplitudes of computational paths are complex numbers

and summing them may give cancellations or reinforcements. In physical
terms, paths can interfere and in general this phenomenon is called quantum

interference. In a similar way, we cannot predict the probability of a particular

computational path.

The derivation of (3.3) as well as the expression in (3.2) are cumbersome

and can be given in a much more convenient form by introducing an evolution

operator for M. Suppose that the cardinality ) S ) 5 N and let H be an N-
dimensional complex Hilbert space with unit sphere HÃ. Take an orthonormal

basis for H and identify this basis with S. Thus, we can assume that S is an

orthonormal basis for H which we call a computational basis for M. We call

the elements of S states and the general elements of HÃsuperposition states.
Of course, a state is also a superposition state in a trivial way. We construct
the evolution operator U for M by defining

Us 5 o
t

d (s, t) t (3.4)

for all s P S and extending U to H by linearity. Our first result shows that

Eq. (3.1) is precisely the condition needed for U to be unitary.
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Lemma 3.1. The operator U: H ® H is unitary if and only if (3.1) holds.

Proof. By Corollary 2.3, U is unitary if and only if ^ Us, Ut & 5 d s, t for

every s, t P S. Since

^ Us, Ut & 5 ^ o
s8

d (s, s8)s8, o
t8

d (t, t8)t8 &

5 o
s8t8

d (s, s8) d (t, t8)* ^ s8, t8 & 5 o
t8

d (s, t8) d (t, t8)*

the result follows. n

It is clear that the adjoint U*: H ® H of U is determined by

U*t 5 o
s

d (s, t)*s

and since U*U 5 UU* 5 1, U* reverses the action of U. Since U* is also

unitary, it follows from Lemma 3.1 that the dual of Eq. (3.1) holds:

o
s

d (s, t) d (s, t8)* 5 d t, t8

The transition function d determines the evolution operator U via Eq. (3.4).

Conversely, d can be retrieved from U because ^ Us, t & 5 d (s, t). In this way,

d and U contain the same information.
The unitary operator U describes the evolution of M as follows. Starting

with state s0, after one time step M is in the superposition state Us0. After

the second time step M is in the superposition state U 2s0 and continuing,

after n steps M is in the superposition state U ns0. In reality, M is always in

a specific state s P S at any given time. However, s is unknown and all we

know is that M is in superposition state c 5 ( a isi , si P S. In this case, M
is in state si with amplitude ^ c , si & 5 a i and probability ) ^ c , si & ) 2 5 ) a i ) 2. If

we try to observe the state at time m, then the superposition state U ms0

ª collapsesº into a definite state s P S. The evolution then restarts at s and

this changes the later operation of M. Thus, an observation can disturb the

operation of M and this phenomenon is called quantum decoherence.

It follows from our previous discussion that the amplitude that M is in
state s at time n becomes

^ U ns0, s & 5 ^ U n 2 1 o
i1

d (s0, si1)si1, s & 5 o
i1

d (s0, si1) ^ U
n 2 1 si1, s &

5 o
i1

d (s0, si1) ^ U
n 2 2 o

i2

d (si1, si2)si2, s &

5 o
i1, i2

d (s0, si1) d (si1, si2) ^ U
n 2 2 si2, s &
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?? ?

5 o
i1,...,in 2 1

d (s0, si1) d (si1, si2) ? ? ? d (sin 2 2, sin 2 1) d (sin 2 1, s)

and this agrees with Eq. (3.2). Thus, the complicated equation (3.2) can be

replaced by the simple equation An(s) 5 ^ U n s0, s & . Moreover, since U n is
unitary, we have

o
s

) An(s) ) 2 5 o
s

) ^ U ns0, s & ) 2 5 |U ns0|
2 5 |s0|

2 5 1

which is a simple derivation of (3.3).

Due to the close connection between d and U, we can give an alternative
way of viewing a QSM. A q-state machine is a triple M 5 (H, s0, U ), where

H is a finite-dimensional Hilbert space, s0 P HÃ, and U: H ® H is a unitary

operator. This definition is more general than our previous definition of a

QSM. Indeed, if M 8 5 (S, s0, d ) is a QSM, then as before we can form a

Hilbert space H with computational basis S and a unitary operator U: H ®
H given by (3.4) to obtain a q-state machine M 5 (H, s0, U ). Conversely,
suppose M 5 (H, s0, U ) is a q-state machine. Then there are many QSMs

corresponding to M. Just let S be an orthonormal basis for H with s0 P S,

define d (s, t) 5 ^ Us, t) & , and let M 8 5 (S, s0, d ). We may think of a q-state

machine as a QSM in which the computational basis is left unspecified. A

QSM is more basic than a q-state machine because a QSM is defined in

terms of the transition amplitudes of the internal states of the machine M
and these are the determining characteristics of M. These characteristic inter-

nal states are unspecified (except for s0) in a q-state machine. However, as

we have seen, a q-state machine is easier to work with for theoretical purposes

and for this reason we shall frequently employ a q-state machine correspond-

ing to a QSM.
A QSM does not have a very useful purpose, it has no input or output

and just evolves. We now consider a more useful variant called a quantum

printer. Let I be a finite alphabet that includes a blank symbol #. A quantum
printer is a 4-tuple P 5 (S, s0, I, d ) where S is a finite set of internal states,

s0 P S is a start state, I is an alphabet, and d : I 3 S 3 I 3 S ® C is a

transition function that satisfies

o
y, t

d (x, s, y, t) d (x8, s8, y, t)* 5 d x,x8 d s,s8 (3.5)

Of course, a quantum printer can be viewed as just a QSM in which the set

of internal states is replaced by I 3 S. However, we can think of a quantum

printer as having an output. Suppose we have a finite tape divided into N 1
2 cells numbered 2 1, 0, 1, . . . , N. The quantum printer P has a tape head
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that begins at cell 0 and moves one cell to the right at each time step and

stops one time step after it enters cell N. (For a realistic printer, the tape

head would be fixed and the tape would move to the left. However, our
description is traditional and easier to visualize.) The original tape is blank

in every cell so P begins in state s0 with # in every cell. At time 0, P scans

its current state s0 and the # in cell 2 1. Then P prints letter y in cell 0 and

enters state s with amplitude d (#, s0, y, s) and moves to cell 1. Then P scans

the printed letter, say y, in cell 0 and its current state, say s, prints letter z
and enters state t with amplitude d ( y, s, z, t) and moves to cell 2. This process
continues until P prints a letter in cell N and stops.

After P stops it certainly produces an output in terms of a printed word

w 5 x1x2 ? ? ? xN. However, quantum theory has nothing to say about the

probability of w. This is because w involves only a restricted set of computa-

tional paths and quantum interference prevents us from associating probabili-

ties to these paths. But we can predict the probability of the last letter or
more generally the probability of any letter in a given cell. As with a QSM

these are most easily given in terms of the associated evolution operator.

As before, we form a finite-dimensional complex Hilbert space H with

an orthonormal basis identified with the elements of I 3 S. Thus, I 3 S is

the computational basis for P and we denote its elements by x ^ s, x P I,
s P S. We define the evolution operator U: H ® H by

Ux ^ s 5 o
y, t

d (x, s, y, t)y ^ t

and it follows from (3.5) and Lemma 3.1 that U is unitary. Now the superposi-

tion state at time n # N is given by U n # ^ s0. Hence, the amplitude that

P will print the letter x in the nth cell and find itself in state s at time n is

An(x, s) 5 ^ U n # ^ s0, x ^ s &

The corresponding probability becomes ) An(x, s)}2. Now the probability that
x is printed in the nth cell is

pn(x) 5 o
s

) An(x, s) ) 2 5 o
s

) ^ U n # ^ s0, x ^ s & ) 2

Notice that pn(x) can indeed be interpreted as a probability because

o
x

pn(x) 5 o
x,s

) ^ U n # ^ s0, x ^ s & ) 2 5 |U n # ^ s0|
2 5 |# ^ s0|

2 5 1

A finalizing QSM is a 4-tuple M f 5 (S, s0, d , Sf) where M 5 (S, s0, d )

is a QSM and Sf # S is a set of final states. The machine M f halts when it

is in a final state s P Sf. As before, we can assume that S is a computational

basis for M f in a Hilbert space H. Since s0 P S and Sf # S, we have that
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either s0 P Sf or s0 P S ’
f . Letting F 5 span(S), we have that s0 P F or s0 P

F ’ . We also define the unitary evolution operator U by Eq.(3.4) and arrive

at the following definition. A finalizing q-state machine is a 4-tuple Mf 5
(H, s0, U, F ) where M 5 (H, s0, U ) is a q-state machine and F is a subspace

of H such that s0 P F or s0 P F ’ .

We have just seen that any finalizing QSM corresponds to a finalizing

q-state machine. Conversely, any finalizing q-state machine M f corresponds

to many finalizing QSMs depending on the chosen computational basis.

Indeed, if M f 5 (H, s0, U, F ) and s0 P F, we can choose an orthonormal
basis Sf for F that includes s0 as an element, extend Sf to an orthonormal

basis S for H, define d (s, t) 5 ^ Us, t & for every s, t P S, and form the

finalizing QSM M 8f 5 (S, s0, d , Sf). However, if s0 P F ’ , we can choose an

orthonormal basis Sf for F, extend Sf to an orthonormal basis S for H that

includes s0 as an element, define d as before, and form the finalizing QSM

M 8f 5 (S, s0, d , Sf). Now the probability that M f is in a final state at time n
is given by

pn(F ) 5 o
s P F

) ^ U n s0, s & ) 2 (3.6)

Denoting the projection onto F by P(F ), we can rewrite (3.6) as

pn(F ) 5 |P(F )U ns0|
2 (3.7)

If pn(F ) 5 1, then M f will halt with certainty at time n or earlier. The certain
halting time for Mf is given by inf{n: pn(F ) 5 1}. It is sometimes of interest

to let the final subspace F vary. In this case, pn becomes a probability measure

on the set of final subspaces. That is, 0 # pn(F ) # 1, pn(H ) 5 1, and

pn(F 1 G) 5 pn(F ) 1 pn(G)

whenever F ’ G.

4. QUANTUM AUTOMATA

Let I be a finite nonempty alphabet and let I* be the set of all words

with finitely many letters in I, including the empty word l . Defining a product
on I* by concatenation and defining l w 5 w l 5 w for all w P I*, I* becomes

a semigroup. A quantum automaton (QA) is a 4-tuple ! 5 (S, s0, I, d ),

where S is a finite set of internal states, s0 P S is the start state, I is a finite

input alphabet, and d : I 3 S 3 S ® C is a transition function that satisfies

o
t

d (x, s, t) d (x, s8, t)* 5 d s,s8 (4.1)

for all x P I and s, s8 P S. When an input word w is fed into !, ! operates
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as follows. After ! scans the first letter x of w and its start state s0, ! updates

its state to s with amplitude d (x, s0, s). Next, ! scans the second letter y of

w and its current state, say s, and updates its state to t with amplitude d ( y,
s, t). This process is continued until all the letters of w are scanned. It is

convenient to assume that words are read from right to left. Thus, if a word

xnxn 2 1 ? ? ? x1 P I* is fed into !, then ! first scans x1, next ! scans x2, . . . ,

and finally ! scans xn.

Assume that the word w 5 xnxn 2 1 ? ? ? x1 is fed into !. The amplitude
of a computational path p 5 (s0, s1, . . . , sn 2 1, s) is defined to be

A( p ) w) 5 d (x1, s0, s1) d (x2, s1, s2) ? ? ? d (xn , sn 2 1, s)

The amplitude that ! ends up in state s is the sum of these amplitudes A( p ) w)

for all such paths p from s0 to s and is given by

A(s ) w) 5 o
i1,...,in 2 1

d (x1, s0, si1) d (x2, si1, si2) ? ? ? d (xn , sin 2 1, s) (4.2)

The corresponding probability is ) A(s ) w) ) 2 and (4.1) ensures that this can

indeed be interpreted as a probability. That is,

o
s P S

) A(s ) w) ) 2 5 1 (4.3)

As in Section 3, we can assume that S is a computational basis for a Hilbert
space H. For x P I define the operator U(x): H ® H by

U(x)s 5 o
t

d (x, s, t)t

for all s P S. As in Lemma 3.1, Eq. (4.1) is a necessary and sufficient

condition for U(x) to be unitary. We call the map U: I ® 8(H ) given by
x j U(x) a transition operator. Of course, d can be retrieved from U because

d (x, s, t) 5 ^ U(x)s, t & . We extend the domain of U from I to I* by defining

U( l ) 5 1 and

U(xnxn 2 1 ? ? ? x1) 5 U(xn)U(xn 2 1) ? ? ? U(x1)

Since a product of unitary operators is unitary, U(w) P 8(H ) for all w P
I*. Notice that U(uv) 5 U(u)U(v) for all u, v P I*. The amplitude that !
ends up in state s after being fed a word w becomes

A(s, w) 5 ^ U(w)s0, s &

and this is consistent with (4.2). Moreover, (4.3) holds because

o
s P S

) A(s ) w) ) 2 5 o
s P S

) ^ U(w)s0, s & ) 2 5 |U(w)s0|
2 5 |s0|

2 5 1

A q-automaton is a 4-tuple ! 5 (H, s0, I, U ) where H is a finite-
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dimensional complex Hilbert space, s0 P HÃ, I is a finite alphabet, and U: I
® 8(H ). As in Section 3, there is a close connection between QAs and q-

automata. A finalizing QA is a pair !8f 5 (!8, St) 5 (S, s0, I, d , Sf) where
! 5 (S, s0, I, d ) is a QA and Sf # S is a set of final states. Similarly, a

finalizing q-automaton is a pair !f 5 (!, F ) 5 (H, s0, I, U, F ) where !8 5
(H, s0, I, U ) is a q-automaton and F is a subspace of H such that s0 P F or

s0 P F ’ . Again, there is a close connection between !f and !8f . Because of

their convenience we shall usually work with q-automata and our definitions

and results can be easily translated for QAs. If !f is a finalizing q-automaton,
then as in (3.7), the probability that !f reaches a final state when fed a word

w is given by

p!(F ) w) 5 |P(F )U(w)s0|
2 (4.4)

The response function for a q-automaton ! 5 (H, s0, I, U ) is the function

R!: I* ® HÃgiven by R!(w) 5 U(w)s0. The superposition state R!(w) is the

one in which ! finds itself when fed the word w. A function R: I* ® HÃis
realizable by a q-automaton ! if R 5 R!. A map G: HÃ® HÃis ’ -preserving if

G( c 1) ’ G( c 2) whenever c 1 ’ c 2. We omit the proof of the following theorem.

Theorem 4.1. For a function R: I* ® HÃ, the following statements are

equivalent.

(a) R is realizable by a q-automaton.

(b) There exists a map U: I ® 8(H ) such that R(xw) 5 U(x)R(w) for
every x P I, w P I*.

(c) There exists an orthonormal basis c i for H such that for every x P
I there is an orthonormal basis c i (x) with the property that ^ R(xw), c i & 5
^ R(w), c i (x) & for all w P I*.

(d) There exists a map G: I 3 HÃ ® HÃsuch that G(x, ? ) is ’ -preserving

and ^ R(xw), c & 5 ^ R(w), G(x, c ) & for every x P I, w P I,* c P HÃ.

A word w is accepted by a finalizing q-automaton ! 5 (H, s0, I, U, F )

if R!(w) 5 U(w)s0 P F. The proof of the following lemma is straightforward.

Lemma 4.2. If ! 5 (H, s0, I, U, F ) is a finalizing q-automaton, then

the following statements are equivalent.

(a) A word w is accepted by !.
(b) P(F )R!(w) 5 R!(w).

(c) p!(F ) w) 5 |P(F )U(w)s0|
2 5 1.

Thus, w is accepted by ! 5 (H, s0, I, U, F ) if and only if ! enters F
with certainty upon receiving w. The language accepted by ! is the set L(!)

of all words in I* that are accepted by !. Hence,



Quantum Automata 2273

L(!) 5 {w P I*: R!(w) P F }

A language L is a quantum language if L 5 L(!) for some finalizing q-
automaton !.

If !i 5 (Hi , si , I, U i , Fi) are finalizing q-automata, i 5 1, 2, then their

tensor product is the finalizing q-automaton given by

!1 ^ !2 5 (H1 ^ H2, s1 ^ s2, I, U1 ^ U2, F1 ^ F2)

where (U1 ^ U2)(x) 5 U1(x) ^ U2(x).

Lemma 4.3. L(!1 ^ !2) 5 L(!1) ù L(!2).

Proof. For w P I* we have

(U1 ^ U2)(w)s1 ^ s2 5 U1(w)s1 ^ U2(w)s2

Hence, (U1 ^ U2)(w)s1 ^ s2 P F1 ^ F2 if and only if U1(w)s1 P F1 and

U2(w)s2 P F2. Thus, w P L(!1 ^ !2) if and only if w P L(!1) ù L(!2)

and the result follows. n

Corollary 4.4. If L1 and L2 are quantum languages over the same alphabet,

then L1 ù L2 is a quantum language.

For a finalizing q-automaton ! 5 (H, s0, I, U, F ) we required that s0

P F ø F ’ . If this requirement is relaxed and we allow F to be an arbitrary

subspace of H, then ! is called a generalized finalizing (g-finalizing) q-

automaton. In general, a g-finalizing q-automaton does not directly correspond

to a finalizing QA. The language L(!) accepted by a g-finalizing q-automaton
! is defined as before. Moreover, a language L is a generalized quantum
language if L 5 L(!) for some g-finalizing q-automaton. Let ! 5 (H, s0,

I, U ) be a q-automaton and let F be a subspace of H. We say that ! accepts
w P I* relative to F if the g-finalizing q-automaton (H, s0, I, U, F ) accepts

w. The set of words that ! accepts relative to F is denoted by L(!; F ). Of

course, L(!; F ) is a generalized quantum language. We denote the span of
two subspaces E and F by E Ú F.

Lemma 4.5. Let E and F be subspaces of H and let ! 5 (H, s0, I, U )

be a q-automaton.

(a) L(!; E ù F ) 5 L(!; E ) ù L(!; F ).

(b) L(!; F ’ ) # I* \L(!; F ).

(c) L(!; E Ú F ) $ L(!; E ) ø L(!; F ).

Proof. (a) Since U(w)s0 P E ù F if and only if U(w)s0 P E and U(w)s0

P F, we have w P L(!; E ù F ) if and only if w P L(!; E ) ù L(!; F ).

(b) Since U(w)s0 P F ’ implies that U(w)s0 ¸ F, we have that w P L(!;

F ’ ) implies w ¸ L(!; F ).
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(c) Assume that w P L(!; E ) ø L(!; F ). We then have that

U(w)s0 P E ø F # E Ú F

Hence, w P L(!; E Ú F ). n

Let !i 5 (Hi , si , I, Ui , Fi) be g-finalizing q-automata over the same

alphabet I. For a , b P C with a , b Þ 0, ) a ) 2 1 ) b ) 2 5 1, form the

linear combination

a !1 1 b !2 5 (H1 % H2, a s1 % b s2, I, U1 % U2, F1 % F2)

where (U1 % U2)(x) 5 U1(x) % U2(x) for every x P I. Then a !1 1 b !2 is

again a g-finalizing q-automaton.

Lemma 4.6. L( a !1 1 b !2) 5 L(!1) ù L(!2).

Proof. For w P L* we have

(U1 % U2)(w)( a s1 % b s2) 5 (U1(w) % U2(w))( a s1 % b s2)

5 a U1(w)s1 % b U2(w)s2

Hence, (U1 % U2)(w)( a s1 % b s2) P F1 % F2 if and only if a U1(w)s1 P
F1 and b U2(w)s2 P F2. Hence, w P L( a !1 1 b !2) if and only if w P
L(!1) ù L(!2). n

Corollary 4.7. If L1 and L2 are generalized quantum languages over the

same alphabet, then L1 ù L2 is a generalized quantum language.

The tensor product of two g-finalizing q-automata over the same alphabet

is defined as before. Moreover, since the proof of Lemma 4.3 still holds, this

gives another demonstration of Corollary 4.7.

Let ! 5 (H, s0, I, U, F ) be a finalizing q-automaton. A word w P I*
is h -accepted by ! where 0 # h , 1 if

p!(F ) w) 5 |P(F )U(w)s0|
2 . h

For example, if w is accepted by !, then w is h -accepted by ! for every h
with 0 # h , 1. The language L(!, h ) h -accepted by ! is the set of all

words h -accepted by !. A language L is h -quantum if L 5 L(!, h ) for some

finalizing q-automaton !. Generalized h -quantum languages are defined in

the obvious way. The proof of the following theorem is omitted.

Theorem 4.8. If L is a generalized h 8-quantum language for 0 # h 8 ,
1, then L is a generalized h -quantum language for every 0 , h , 1.

Let I 5 {x1,. . . , xn} be a finite alphabet and form the alphabet

IÃ5 {x1, . . . , xn , x81, . . . , x8n}

If we identify xi x8i and x8i xi with l , i 5 1, . . . , n, then IÃ* becomes a group
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(the free group over I ). If ! 5 (H, s0, I, U, F ) is a finalizing q-automaton,

we can form !Ã 5 (H, s0, IÃ, UÃ, F ), where UÃ(xi) 5 U(xi) and UÃ(x8i ) 5
U(xi)*, i 5 1, . . . , n. We call !Ãa finalizing group q-automaton . As before,

we extend UÃ: I ® 8(H ) to a map (also denoted by UÃ) from IÃ* to 8(H ).

Then UÃ: IÃ* ® 8(H ) is a unitary representation of the group IÃ* in H. Notice

that L(!Ã) ù I* 5 L(!) and L(!Ã, h ) ù I* 5 L(!, h ). Thus, any quantum
or h -quantum language can be obtained from a finalizing group q-automaton.

These definitions and the results to follow easily extend to g-finalizing q-

automata.

To simplify notation, let ! 5 (H, s0, I, U, F ) be a finalizing group q-

automaton. Then U(w 2 1) 5 U(w)* for every w P I*. Letting

H0 5 span{U(w)s0: w P I*}

we have that H0 is a Hilbert space containing s0. Form

!0 5 (H0, s0, I, U0, F ù H0)

where U0(x) 5 U(x) ) H0 for all x P I. The next result shows that !0 is a
finalizing q-automaton that accepts the same language as !.

Theorem 4.9. (a) U0: I* ® 8(H0) is a unitary representation of I* in

H0 so that !0 is a finalizing q-automaton. (b) L(!) 5 L(!0). (c) If P(F )P(H0)

5 P(H0)P(F ), then L(!, h ) 5 L(!0, h ) for all 0 # h , 1.

Proof. (a) It is clear that U0(w)H0 # H0 and U0(w)* H0 # H0 for every

w P I*. Moreover, for every x P I and c P H0 we have

U0(x)U0(x)* c 5 U(x)U(x)* c 5 c

so that U0(x) U0(x)* 5 1H0. Hence, U0(x) P 8(H0) for every x P I. Since

F ù H0 is a subspace of H0 and s0 P (F ù H0) ø (F ù H0)
’ , it follows that

!0 is a finalizing q-automaton. (b) It is clear that L(!0) # L(!). If w P
L(!), then

U0(w)s0 5 U(w)s0 P F

Since U0(w)s0 P H0, we have U0(w)s0 P F ù H0, so that w P L(!0). Hence,
L(!) 5 L(!0). (c) Since P(F ù H0) 5 P(F )P(H0), we have

P(F ù H0)U0 (w)s0 5 P(F )P(H0)U0 (w)s0 5 P(F )U (w)s0

for every w P I* and the result follows. n

Theorem 4.9 shows that if H0 Þ H, then there exists a finalizing q-

automaton !0 that has a smaller set of states than ! but accepts the same

quantum language as !. In this case, the number of states for a computational
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basis of ! can be reduced. The next result shows that we can obtain the

same result for an arbitrary q-automaton.

Corollary 4.10. Let ! 5 (H, s0, I, U, F ) be a finalizing q-automaton

and let

H0 5 span{U(w)s0, U(w)*s0, w P I*}

Then !0 5 (H0, s0, I, U0, F ù H0), where U0(x) 5 U(x) ) H0 for every x P
I, is a finalizing q-automaton for which L(!) 5 L(!0). Moreover, if

P(F )P(H0) 5 P(H0)P(F ), then L(!, h ) 5 L(!0, h ) for all 0 # h , 1.

5. QUANTUM GATES

It is now clear that finite-dimensional unitary operators play an important

role in the theory of quantum computers. However, in order to build an

actual physical quantum computer a unitary operator must be implemented

in practice. It appears that the best way to do this is to break a unitary operator

down into simpler components called quantum gates.
Of course, a finite-dimensional unitary operator can be considered to

be a unitary matrix, so for simplicity we shall restrict our attention to unitary

matrices. We denote the standard basis on the n-dimensional Hilbert space

C n by e1, . . . , en. An n 3 n unitary matrix M is basic if M satisfies one of

the following conditions.
1. M is the identity matrix except that one of its diagonal entries is ei u

for some u P ( 2 p , p ].

2. M is the identity matrix except that the submatrix in one pair of

distinct indices j and k of M is the rotation by some angle u P ( 2 p , p ]:

F cos u 2 sin u
sin u cos u G

A matrix of type 1 has the form Mej 5 ej for j Þ k and Mek 5 ei u ek.
A matrix of type (2) has the form Mer 5 er for r Þ j, k and

Mej 5 (cos u )ej 1 (sin u )ek

Mek 5 ( 2 sin u )ej 1 (cos u )ek

These basic unitary matrices are also called quantum gates. If M is of type
1, we call M a basic phase shift, and if M is of type 2, we call M a basic
rotation. When M is a basic phase shift of ei u in the index j, we write M 5
[j, j, u ], and when M is a basic rotation of angle u between indices j and k,

we write M 5 [j, k, u ]. The next result gives a well-known compact form

for a basic rotation.
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Lemma 5.1. For u P ( 2 p , p ] we have

M 5 F cos u 2 sin u
sin u cos u G 5 exp H u F 0 2 1

1 0 G J
Proof. The spectral representation of the rotation is

M 5 (cos u 1 isin u )P1 1 (cos u 2 isin u )P2 5 ei u P1 1 e 2 i u P2

where P1 and P2 are the projections

P1 5
1

2 F 1 i

2 i 1 G , P2 5
1

2 F 1 2 i

i 1 G
Let

M1 5 u P1 2 u P2 5 i u F 0 1

2 1 0 G
Then

M 5 eiM1 5 expH u F 0 2 1

1 0 G J n

We shall show that any unitary matrix can be written as a product of

quantum gates. Before doing this, we consider the following example [10].

Deutsch has introduced the not gate

N 5 F 0 1

1 0 G
Although N is not a quantum gate, we can write N as a product of quan-

tum gates

N 5 F 2 1 0

0 1 G F 0 2 1

1 0 G 5 [1, 1, p ][1, 2, p /2]

More generally, let a P [0, 2] and let N a be a power of the not gate.

Notice that since N 2 5 1, this includes all real powers of N. The spectral

representation of N is N 5 P1 2 P2, where P1 and P2 are the projections

P1 5
1

2 F 1 1

1 1 G , P2 5
1

2 F 1 2 1

2 1 1 G
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Hence,

N a 5 P1 1 ( 2 1) a P2 5 P1 1 ei p a P2

5
1

2 F 1 1 ei p a 1 2 ei p a

1 2 ei p a 1 1 ei p a G 5 ei p a /2 F cos p a /2 2 i sin p a /2

2 i sin p a /2 cos p a /2 G
For example, the square root of N is

N 1/2 5
1

2 F 1 1 i 1 2 i

1 2 i 1 1 i G
We can write N a as a product of quantum gates

N a 5 F ei p a /2 0

0 1 G F 1 0

0 ei p a /2 G F 1 0

0 2 i G F cos p a /2 2 sin p a /2

sin p a /2 cos p a /2 G F 1 0

0 i G
5 [1, 1, p a /2][2, 2, p ( a 2 1)/2] [1, 2, p a /2][2, 2, p /2]

The following two results are based on work in ref. 6. We shall present

a simpler version (and correct some minor errors) of their proofs. The reason
that our version is simpler is that they show that this construction is computa-

tionally efficient, which we do not discuss here.

Lemma 5.2. (a) If v 5 (v1, v2) P R 2 with v1, v2 $ 0, then there exists
a basic rotation U such that Uv 5 |v|e1. (b) For any v P C n with |v| 5 1

there exist quantum gates U1, . . . , U2n 2 1 such that U1 ? ? ? U2n 2 1v 5 e1.

Proof. (a) If v 5 0, then U 5 1 will do, so suppose v Þ 0. If v1 5 0,
let u 5 2 p /2 and otherwise let u 5 tan 2 1( 2 v2/v1). Then sin u 5 2 v2/|v|,
cos u 5 v1/|v|, and letting U 5 [1, 2, u ], we have

Uv 5
1

|v| F v1 v2

2 v2 v1 G F v1

v2 G 5 |v|e1

(b) If

v 5 (v1, . . . , vn) 5 ( ) v1 ) ei u 1, . . . , ) vn ) ei u n)

let Pj 5 [j, j, 2 u j], j 5 1, . . . , n. Then P1 ? ? ? Pnv 5 ( ) v1 ) , . . . , ) vn ) ). Applying

part (a), we have that there exist basic rotations R1, . . . , Rn 2 1 such that

R j ( ) v1 ) , . . . , ) vn ) ) 5 ( ) v1 ) , . . . , ) vj 2 1 ) , ( ) vj ) 2 1 ) vj 1 1 ) 2)1/2, 0, ) vj 1 2 ) , . . . , ) vn ) )
j 5 1, . . . , n 2 1. We then have

R1 ? ? ? Rn 2 1P1 ? ? ? Pnv

5 R1 ? ? ? Rn 2 1( ) v1 ) , . . . , ) vn ) )
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5 R1 ? ? ? Rn 2 2( ) v1 ) , . . . , ) vn 2 2 ) , ( ) vn 2 1 ) 2 1 ) vn ) 2)1/2, 0)

5 R1 ? ? ? Rn 2 3( ) v1 ) , . . . , ) vn 2 3 ) , ( ) vn 2 2 ) 2 1 ) vn 2 1 ) 2 1 ) vn ) 2)1/2, 0, 0)

?? ?

5 (( ) v1 ) 2 1 ? ? ? 1 ) v2 ) 2)1/2, 0, . . . , 0) 5 e1 n

Theorem 5.3. If U is an n 3 n unitary matrix, there exist quantum gates

U1, . . . , Um such that U 5 U1 ? ? ? Um.

Proof. A n 3 n unitary matrix M is k-simple if the first k rows and
columns of M are the same as those of the n-dimensional identity matrix 1n.

In this case, we can write m 5 1k % A where A is an (n 2 k) 3 (n 2 k)

unitary matrix. In particular, any unitary matrix is 0-simple and if M is n-

simple, then M 5 1n. Notice that the product of two n 3 n k-simple matrices

is also k-simple. Suppose that U 5 1k % A is k-simple, 0 # k , n, and let
A1 be the first row of A. By Lemma 5.2(b), there exist (n 2 k)-dimensional

quantum gates V1, . . . , V2(n 2 k) 2 1 with product V 5 V1 ? ? ? V2(n 2 k) 2 1 such that

V A*1 5 eÄ 1, where eÄ 1 is the first standard basis element of C n 2 k. Then VÃ5
1k % V is k-simple and hence W 5 U VÃ* is also k-simple. We now show

that W is (k 1 1)-simple. Letting Wk 1 1 be the (k 1 1)th row of W, we must

show that Wk 1 1 is the standard basis element ek 1 1 P C n. Now

W 5 UVÃ* 5 (1k % A)(1k % V*) 5 1k % AV*

Hence, letting 0k be the zero vector in C k, we have

Wk 1 1, j 5 ^ Wej , ek 1 1 & 5 ^ (1k % AV*)ej , ek 1 1 &

5 ^ ej , (1k % VA*)ek 1 1 & 5 ^ ej , (1k % VA*)0k % eÄ 1 &

5 ^ ej , 0k % VA*eÄ 1 & 5 ^ ej , 0k % VA*1 &

5 ^ ej , 0k % eÄ 1 & 5 ^ ej , ek 1 1 & 5 d j,k 1 1

Thus, Wk 1 1 5 ek 1 1.

We have shown that if U is k-simple, then U 5 W1VÃ1, where V1 is a

product of quantum gates and W1 is (k 1 1)-simple. Repeating this process,

we have W1 5 W2VÃ2, where VÃ2 is a product of quantum gates and W2 is (k 1
2)-simple. Hence, U 5 W2VÃ2VÃ1 and eventually U 5 Wn 2 k VÃn 2 k ? ? ? VÃ1 Since

Wn 2 k is n-simple, we have U 5 VÃn 2 k ? ? ? VÃ1. n

Recall the pumping lemma for regular languages. If L is a regular

language, then any sufficiently long word w P L can be written w 5 xyz

such that xykz P L for every k P N . The following lemma is a variation of

a result in ref. 17.
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Lemma 5.4 (Quantum pumping lemma). Let ! 5 (H, s0, I, U ) be a q-

automaton. For any « . 0 and w P I* there exists a k P N such that

i U(uwkv) 2 U(uv) i , « (5.3)

for all u, v P I*.

Proof. By Theorem 6 [17] there exists a k P N such that U(w)k 5 1 1
« J, where |J| , 1. Hence,

i U(uwkv) 2 U(uv) i 5 i U(u)U(w)kU(v) 2 U(u)U(v) i
5 i U(u)[U(w)k 2 1]U(v) i
# i U(w)k 2 1 i 5 « |J| , « n

Corollary 5.5. Let ! 5 (H, s0, I, U, F ) be a finalizing q-automaton. If

uv P L(!, h ) and w P I*, then there exists a k P N such that u wkv P L(!, h ).

Proof. Since |P(F )U(uv)s0| . h , there exists an « . 0 such that

|P(F )U(uv)s0| . h 1 «

By Lemma 5.4, there exists a k P N such that (5.3) holds. Hence,

i P(F )U(uwkv)s0 i 5 i P(F )U(uv)s0 1 P(F )U(uwkv)s0 2 P(F )U(uv)s0 i
$ |P(F )U(uv)s0| 2 i P(F )U(uwkv) s0 2 P(F )U(uv)s0 i
. h 1 « 2 i U(uwkv) 2 U(uv) i . h n

Corollary 5.6. There are regular languages that are not h -quantum for

any 0 # h , 1.

Proof. By Corollary 5.5, no letter is forbidden in L(!, h ) if L(!, h ) Þ
{ l }. But there exist regular languages other than { l } with a forbidden

letter. n

For related results in a slightly different approach, we refer the reader

to ref. 16.

6. OPEN PROBLEMS

The work in Sections 3±5 suggest many open problems. We now list
the ones that we consider to be the most interesting and important.

If ! 5 (H, s0, I, U, F ) is a finalizing q-automaton, the probability
function p!: I* ® [0, 1] for ! is defined by

p!(w) 5 |P(F )U(w)s0|
2

We say that p: I* ® [0, 1] is realizable if p 5 p! for some finalizing q-

automaton !.
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Problem 1. Characterize the realizable functions p: I* ® [0, 1].

Problem 2. Characterize the finalizing q-automaton ! that satisfies

p!(w) P {0, 1} for every w; that is, p! is a characteristic function.

The next set of problems deal with quantum languages.

Problem 3. Can the requirement that L1 and L2 have the same alphabet

be removed in Corollary 4.4?

Problem 4. If L is a quantum language over the alphabet I, is I* \L a
quantum language?

Problem 5. If L1 and L2 are quantum languages over the same alphabet,
is L1 ø L2 a quantum language?

Problem 6. If the answer to Problem 5 is yes, can the same alphabet
requirement be removed?

Problem 7. Is every generalized quantum language a quantum language?

Problem 8. If the answer to Problem 7 is no, answer Problems 3±6 for

generalized quantum languages.

Problem 9. Is L(!; E ) ø L(!; F ) a quantum language? If not, what if

E ’ F?

Problem 10. If L1 and L2 are h -quantum languages, is L1 ù L2 an h -

quantum language?

Problem 11. Answer Problems 3±9 for h -quantum languages.

Problem 12. Are 0-quantum, h -quantum for 0 , h , 1, and quantum

languages the same thing? If not, how do they compare?

Two finalizing q-automata !1, !2 over the same alphabet are equivalent
if L(!1) 5 L(!2) and h -equivalent if L(!1, h ) 5 L(!2, h ).

Problem 13. Characterize the pairs !1, !2 that are equivalent, h -

equivalent.

The next set of problems deal with the material of Section 5.

Problem 14. Does Corollary 5.5 hold with L(!, h ) replaced by L(!)?

Problem 15. Are there regular languages that are not quantum languages?
(See Problem 12.)

Problem 16. Are there quantum languages ( h -quantum languages) that

are not regular?
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As the reader can see from this long list, the present paper opens more

problems than it has solved. Thus there is much more interesting work to

be done.
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